Induction of aryl hydrocarbon hydroxylase and DNA adduct formation in parental and carcinogen transformed C3H/10T1/2 clone 8 cells by benzo[a]pyrene.
C3H/10T1/2 clone 8 (10T1/2) cells possess aryl hydrocarbon hydroxylase (AHH) activity capable of metabolizing polycyclic aromatic hydrocarbons to ultimate carcinogenic forms. AHH activity in 10T1/2 cells was measured before and after culturing in the presence of benzo[a]pyrene (B[a]P), and compared to the AHH activity found in carcinogen-transformed 10T1/2 cell lines treated similarly. The cell lines were also examined for B[a]P-DNA adduct formation, using the 32P-postlabelling technique. Treatment of parental 10T1/2 cells with B[a]P was found to significantly increase AHH activity and produce substantial numbers of DNA adducts. In addition to a major B[a]P-DNA adduct, 5-6 minor DNA adducts were also detected. Relative to parental 10T1/2 cells, an aflatoxin B1-transformed 10T1/2 cell line (7SA) was found to have significantly depressed AHH activity. In addition, after treatment with B[a]P, 7SA cells had only 8% of the B[a]P-DNA adduct levels found in 10T1/2 cells. This system may provide an in vitro model for investigating mechanisms responsible for the depression of cytochrome P-450 activities by chemical carcinogens.
更多- 翻译满意度评价:
- 提交
- 浏览:8
相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文