• 医学文献
  • 知识库
  • 评价分析
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
论文 期刊
高级检索

检索历史 清除

人工智能优化算法对提高大体型患者低剂量扫描冠状动脉图像质量的价值

Impact of artificial intelligence-based optimization algorithm on image quality of low dose coronary CT angiography in big size patients

摘要:

目的:探讨人工智能(AI)图像优化算法对提高大体型患者低剂量扫描冠状动脉图像质量的价值.方法:前瞻性连续纳入2018年2-5月在本院NeuViz 128 CT行冠状动脉CTA检查的28例大体型患者(BMI>26 kg/m2).所有的患者均采用步进扫描模式,管电压100 kV,自动管电流调制(233.4±46.7 mAs).对原始数据采用迭代算法(Clearview+ 50%)进行重建得到A组图像,进一步对该组图像采用AI图像优化技术进行处理,所得图像作为B组.分别在主动脉根部、左主干开口、左前降支中段、左回旋支中段及右冠状动脉中段选取不同的兴趣区,测量这两组图像的冠状动脉的CT值、噪声、信噪比(SNR)、对比噪声比(CNR),由两名高年资的医生以Likert 4级评分法评估该两组图像的主观评分(1分,优秀;4分,不能诊断).结果:患者平均BMI为(29.31±3.19) kg/m2,平均心率(64.89±8.13)次/分.与A组图像相比,B组图像主动脉根部、左主干开口、左前降支中段、左回旋支中段及右冠状动脉中段的噪声分别降低了68.36%、45.89%、28.41%、32.49%和31.25%.B组图像SNR和CNR明显优于A组图像(P均<0.01).B组冠状动脉主观评分明显优于A组图像质量(1.66±0.27 vs.1.82±0.20,P<0.001).扫描过程中CT剂量指数为(10.6±0.9) mGy,剂量长度乘积为(167.8±26.2) mGy· cm,有效剂量为(2.3±0.4) mSv.结论:AI图像优化算法可以有效提高大体型患者在低剂量扫描时的冠状动脉图像质量,为大体型患者降低辐射剂量及优化冠脉动脉图像质量提供了新思路和新方法.

更多
作者: 刘珮君 [1] 王怡宁 [1] 于敏 [2] 王曼 [1] 闫爽 [1] 易妍 [1] 徐橙 [1] 王沄 [1] 金征宇 [1]
第一作者: 刘珮君
作者单位: 100730 北京中国医学科学院,北京协和医学院,北京协和医院放射科 [1] 100193,北京东软医疗设备有限公司 [2]
期刊: 《放射学实践》2019年34卷7期 760-766页 ISTICPKU
分类号: R814.42R-05
栏目名称: 心血管影像学
DOI: 10.13609/j.cnki.1000-0313.2019.07.009
发布时间: 2019-08-27
基金项目:
国家自然科学基金 “十三五”国家重大慢性非传染性疾病防控研究
  • 浏览:49
  • 下载:79

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

充值 订阅 收藏 移动端 使用
帮助