基于近红外光谱的冬小麦籽粒蛋白质含量检测
Detection of grain protein content in winter wheat based on near infrared spectroscopy
摘要冬小麦籽粒蛋白质含量(GPC)是评价冬小麦品质的主要指标,为了研究不同建模方法对GPC检测的影响,本研究对冬小麦籽粒的近红外原始光谱进行S-G平滑、基线校正和多元散射校正等预处理,利用连续投影算法(SPA)提取冬小麦GPC的重要光谱波段,并结合偏最小二乘回归(PLSR)、主成分回归(PCR)、支持向量机(SVM)和多元线性回归(MLR)建立GPC的光谱预测模型,并综合比较模型的适用性.结果表明:经过SPA提取的特征波段为1801、1010、1109、2284、2219、2239、871、1361、1925、1849和1456 nm;模型评价方面,利用特征波段建立的SVM模型效果较好,其中校正均方根误差(RMSEC)和R2分别为0.2481和0.9760,验证均方根误差(RMSEP)和R2分别为0.3587和0.9581.研究表明,SPA+SVM预测模型在一定程度上能够实现冬小麦籽粒蛋白质的快速、无损检测.
更多相关知识
- 浏览42
- 被引17
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



