• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于ResNet的可解释性计算机视觉模型在内镜下内痔评估中的应用

ResNet-based interpretable computer vision model in the endoscopic evaluation of internal hemorrhoids

摘要目的 为克服深度学习模型黑盒不可解释的缺点,本研究旨在探讨可解释性计算机视觉模型在内镜下内痔诊断及危险分级中的应用.方法 收集苏州大学附属第一医院内镜中心的肛齿状线上倒镜图片,分为内痔组和正常组;根据LDRf分级标准,对内痔组进一步分级为Rf0、Rf1及Rf2三组.针对有无内痔、红色征、糜烂、血栓及活动性出血,构建基于ResNet50V2的可解释化模型,并利用江苏大学附属金坛医院内镜中心的内镜图片进行外部验证.使用准确性、敏感性、特异性以及F1值等指标对比可解释化模型与传统深度学习黑盒模型的表现,并与两位不同年资内镜医生进行比较.结果 ResNet可解释化模型的准确性为0.957、敏感性为0.978、特异性为0.974,F1值为0.958,其准确性高于黑盒模型的0.938,高年资内镜医生的0.933及低年资医生的0.907.此外,模型采用Grad-CAM方法突出图像中对模型推理依据的区域.结论 本研究通过收集内镜下肛齿状线上倒镜图像,构建可解释化计算机视觉模型并进行外部验证,提示该模型在内镜下内痔诊断与评级中表现优于传统深度学习黑盒模型.该模型在未来临床内镜诊疗中具有良好应用前景.

更多
广告
分类号 R57
栏目名称 基础研究
DOI 10.3969/j.issn.1672-2159.2023.08.009
发布时间 2023-12-29
基金项目
国家自然科学基金 苏州市科技计划 苏州市科教兴卫项目
  • 浏览22
  • 下载3
现代消化及介入诊疗

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷