• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于BiLSTM-Attention混合神经网络的心律失常预测

Arrhythmia Prediction Based on BiLSTM-Attention Hybrid Neural Network

摘要目的 探讨BiLSTM-Attention混合神经网络模型在心律失常预测中的应用价值.方法 选取中国心血管疾病数据库27036条心电图(Electrocardiogram,ECG)数据,按照8∶1∶1的比例划分为训练集、验证集和测试集,采用中值滤波法与小波变换阈值法对原始ECG数据进行降嗓预处理,采用BiLSTM对数据进行特征学习,融合注意力机制分配注意力权重,构建BiLSTM-Attention模型进行心律失常分类预测.将BiLSTM-Attention模型与长短期记忆网络(Long Short-Term Memory,LSTM)、LSTM-Attention和BiLSTM模型进行对比,采用Fl分数和曲线下面积(Area Under Curve,AUC)对模型进行评价.结果 BiLSTM-Attention模型总体的F1分数为0.799,心房颤动、一度房室传导阻滞、窦性心律失常、窦性心律均获得了较高的F1分数,分别为0.955、0.862、0.954和0.917,9类心律失常的AUC均大于0.87.结论 BiLSTM-Attention心律失常分类模型具备较强的分类能力,对部分心律失常有较强的识别能力,经训练后能更好地辅助临床进行心律失常诊断,具备一定的实用价值.

更多
广告
  • 浏览27
  • 下载4
中国医疗设备

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷