正常人瞳孔对光反射的生物力学性能与年龄的相关性
A Preliminary Study on the Correlation between the Biomechanical Properties of Pupillary Light Reflex and Age in Normal Humans
摘要目的::初步探索正常人瞳孔对光反射曲线的生物力学模型,了解各分量参数与年龄的关系。方法::系列病例研究。使用Oculus Keratograph 4角膜地形图仪的Pupillometer程序收集2015年2月至2018年7月在温州医科大学附属眼视光医院视光诊疗中心就诊的143名眼部正常受试者一眼的瞳孔对光反射曲线数据,将曲线数据代入Matlab编制的生物力学模型方程,使用逐次逼近法进行拟合求解,获得瞳孔开大肌和瞳孔括约肌的弹性系数和黏滞系数;获得交感神经和副交感神经的静息、冲动神经量和神经冲动发生的延迟时间。各模型参数与年龄、瞳孔直径(PD)的关系使用相关分析和多元线性回归分析。结果::143名受试者中男65名,女78名,年龄(45.3±22.6)岁,PD为(5.58±1.06)mm,瞳孔括约肌弹性系数 kc为(0.29±0.29)mN/(g·mm 2),瞳孔括约肌静息半径 L0c为(0.89±0.05)mm,瞳孔开大肌弹性系数 kd为(1.27±1.08)mN/(g·mm 2),瞳孔开大肌静息长度 L0d为(3.40±0.28)mm,虹膜肌肉黏滞系数D为(3.57±0.15)mN·s/(g·mm),副交感神经冲动分量 fp为(134.77±33.23)mN/g,交感神经冲动分量 fs为(1.26±1.84)mN/g,副交感神经静息分量 fp0为(0.19±0.26)mN/g,交感神经静息分量 fs0为(0.09±0.12)mN/g,副交感神经冲动延时 tp为(1.15±0.10)s,交感神经冲动延时 ts为(2.14±0.36)s。其中,随年龄增加而增加的瞳孔对光反射参数为 Kc,随年龄增加而减小的瞳孔对光反射参数有PD、 kd、 L0d、 fp、 tp,使用对光反射模型预测PD的多元线性回归方程为:PD=2.9585-0.0099×年龄+0.0059× fp+1.3259× fs0-1.4853× kc+0.3006× kd+1.0159× L0d( F=79.906, P<0.001)。 结论::本研究通过建立虹膜生物力学模型,获取正常人的虹膜黏滞系数、交感及副交感神经在瞳孔对光反射中的具体数值,有利于对虹膜或自主神经相关疾病的研究。
更多相关知识
abstractsObjective::To conduct a preliminary investigation of a biomechanical model of the pupillary light reflex in normal human pupils; to understand the relationship between the parameters of the model and age.Methods::This was a descriptive study. A total of 143 patients with normal eyes were enrolled in a case-series study at the Optometric Clinic Center of the Eye Hospital, Wenzhou Medical University, from February 2015 to July 2018. The pupillary light reflex (PLR) data were obtained using the pupillometer program of Oculus Keratograph 4. The biometric model fitting was applied to the PLR data compiled by Matlab software, which was solved using a step-by-step approximation method to obtain the elasticity coefficient and viscous coefficient of the pupil dilator muscle and constrictor muscle. The amount of resting time and impulsive sympathetic and parasympathetic nerves and the delayed response of the nerve impulse were also calculated.Results::A total of 143 subjects, 65 males and 78 females, aged 45.3±22.6 years, with an average pupil diameter (PD) of 5.58±1.06 mm participated in the study. The following parameters were calculated: elastic constant of the constrictor ( kc) 0.29±0.29 mN/g·mm 2, radius of the constrictor at rest ( L0c) 0.89±0.05 mm, elastic constant of the dilator ( kd) 1.27±1.08 mN/g·mm 2, dilator muscle resting length ( L0d) 3.40±0.28 mm, viscous constant of the pupil muscle (D) 3.57±0.15 mN·s/g·mm, muscle forces originating from the parasympathetic system induced by a light stimulus ( fp) 134.77±33.23 mN/g and from the sympathetic system induced by a light stimulus ( fs) 1.26±1.84 mN/g, muscle forces originating from the parasympathetic system at rest ( fp0) 0.19±0.26 mN/g and from the sympathetic system at rest ( fs0) 0.09±0.12 mN/g, the delayed response of the parasympathetic nerve impulse ( tp) 1.15±0.10 s and the sympathetic nerve impulse ( ts) 2.14±0.36 s. The Kc parameters of the PLR data increased with age and the parameters of the pupil-to-light reflection that decreased with age were PD, kd, L0d, fp, tp. The multilinear regression equation of predicting pupil diameter (PD) using the PLR model is PD=2.9585-0.0099×age+0.0059× fp+1.3259× fs0-1.4853× kc+0.3006× kd+1.0159× L0d ( F=79.906, P<0.001). Conclusions::By establishing the biomechanical model of PLR, the study obtained the elastic and viscous constants, coefficients, and parasympathetic and sympathetic nerves in PLR, which is beneficial to the application of PLR in autonomic neuro-related diseases.
More相关知识
- 浏览0
- 被引7
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文