• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro

摘要Bckground Stem cells, which have the ability to differentiate into insulin-producing cells (IPCs), would provide a potentially unlimited source of islet cells for transplantation and alleviate the major limitations of availability and allogeneic rejection. Therefore, the utilization of stem cells is becoming the most promising therapy for diabetes mellitus (DM). Here,we studied the differentiation capacity of the diabetic patient's bone marrow-derived mesenchymal stem cells (MSCs) and tested the feasibility of using MSCs for β-cell replacement.Methods Bone marrow-derived MSCs were obtained from 10 DM patients (5 type 1 DM and 5 type 2 DM) and induced to IPCs under a three-stage protocol. Representative cell surface antigen expression profiles of MSCs were analysed by flow cytometric analysis. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect multiple genes related to pancreatic β-cell development and function. The identity of the IPCs was illustrated by the analysis of morphology, ditizone staining and immunocytochemistry. Release of insulin by these cells was confirmed by immunoradioassay.Results Flow cytometric analysis of MSCs at passage 3 showed that these cells expressed high levels of CD29 (98.28%), CD44 (99.56%) and CD106 (98.34%). Typical islet-like cell clusters were observed at the end of the protocol (18 days). Ditizone staining and immunohistochemistry for insulin were both positive. These differentiated cells at stage 2 (10 days) expressed nestin, pancreatic duodenal homeobox-1 (PDX-1), Neurogenin3, Pax4, insulin, glucagon, but at stage 3 (18 days) we observed the high expression of PDX-1, insulin, glucagon. Insulin was secreted by these cells in response to different concentrations of glucose stimulation in a regulated manner (P<0.05).Conclusions Bone marrow-derived MSCs from DM patients can differentiate into functional IPCs under certain conditions in vitro. Using diabetic patient's own bone marrow-derived MSCs as a source of autologous IPCs for β-cell replacement would be feasible.

更多
广告
作者单位 Department of Endocrinology, Qilu Hospital, Shandong University,Jinan 250012, China [1] Yuhuangding Hospital, Yantai 264000, China [2]
分类号 R5
栏目名称 ORIGINAL ARTICLES
发布时间 2008-03-03
提交
  • 浏览147
  • 下载12
中华医学杂志(英文版)

中华医学杂志(英文版)

2007年120卷9期

771-776页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷