• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Comprehensive analysis of long non-coding RNA and mRNA expression profile in rectal cancer

Comprehensive analysis of long non-coding RNA and mRNA expression profile in rectal cancer

摘要Background::Rectal cancer (RC) is a malignant tumor that seriously threatens human health. Long non-coding RNAs (lncRNAs) play a vital role in tumor regulation. Nevertheless, their exact expression features and functions remain obscure, and therefore was the aim of the current study.Methods::We utilized the Affymetrix human GeneChip to screen differentially expressed profiles of lncRNAs and mRNAs from the cancer tissues and matched paracancer tissues of 6 RC patients. Gene Ontology (GO) and pathway enrichment analyses identified crucial functions and pathways of the aberrantly expressed mRNAs. We used quantitative real-time polymerase chain reaction to verify the significant expression differences of 11 candidate lncRNAs between the cancer and paracancer tissues. LncRNA-mRNA coexpression networks were built by calculating the Pearson correlation value to identify significant correlation pairs. Online bioinformatics tools GEPIA2, ONCOMINE, and PROGgeneV2 were used to mine the expression and prognosis of three crucial mRNAs and six verified lncRNAs. Competing endogenous RNA networks were constructed by predicting microRNA response elements and calculating free energy.Results::We found 1658 differentially expressed lncRNAs (778 up-regulated and 880 down-regulated) and 1783 aberrantly expressed mRNAs (909 up-regulated and 874 down-regulated). GO and pathway enrichment analyses revealed the vital functions of the differentially expressed mRNAs, including cell proliferation, cell migration, angiogenesis, and cellular response to zinc ion. The canonical signaling pathways mainly included the interleukin-17, cell cycle, Wnt, and mineral absorption signaling pathways. Six lncRNAs including AC017002.2 ( P= 0.039), cancer susceptibility 19 (CASC19) ( P= 0.021), LINC00152 ( P= 0.013), NONHSAT058834 ( P= 0.007), NONHSAT007692 ( P= 0.045), and ENST00000415991.1 ( P= 0.045) showed significant differences in expression levels between the cancer tissue and paracancer tissue groups. AC017002.2, NONHSAT058834, NONHSAT007692, and ENST00000415991.1 have not yet been reported in RC. The crucial mRNAs myelocytomatosis viral oncogene (MYC), transforming growth factor beta induced (TGFBI), and solute carrier family 7 member 5 (SLC7A5) were selected. AC017002.2 and LINC00152 were positively correlated with MYC, TGFBI, and cytochrome P450 family 2 sub-family B member 6 (All r > 0.900, P < 0.050). NONHSAT058834 was positively associated with MYC ( r = 0.930, P < 0.001), and CASC19 was positively correlated with SLC7A5 ( r= 0.922, P < 0.001). Conclusion::This study offers convincing evidence of differentially expressed lncRNAs and mRNAs as potential biomarkers in RC.

更多

abstractsBackground::Rectal cancer (RC) is a malignant tumor that seriously threatens human health. Long non-coding RNAs (lncRNAs) play a vital role in tumor regulation. Nevertheless, their exact expression features and functions remain obscure, and therefore was the aim of the current study.Methods::We utilized the Affymetrix human GeneChip to screen differentially expressed profiles of lncRNAs and mRNAs from the cancer tissues and matched paracancer tissues of 6 RC patients. Gene Ontology (GO) and pathway enrichment analyses identified crucial functions and pathways of the aberrantly expressed mRNAs. We used quantitative real-time polymerase chain reaction to verify the significant expression differences of 11 candidate lncRNAs between the cancer and paracancer tissues. LncRNA-mRNA coexpression networks were built by calculating the Pearson correlation value to identify significant correlation pairs. Online bioinformatics tools GEPIA2, ONCOMINE, and PROGgeneV2 were used to mine the expression and prognosis of three crucial mRNAs and six verified lncRNAs. Competing endogenous RNA networks were constructed by predicting microRNA response elements and calculating free energy.Results::We found 1658 differentially expressed lncRNAs (778 up-regulated and 880 down-regulated) and 1783 aberrantly expressed mRNAs (909 up-regulated and 874 down-regulated). GO and pathway enrichment analyses revealed the vital functions of the differentially expressed mRNAs, including cell proliferation, cell migration, angiogenesis, and cellular response to zinc ion. The canonical signaling pathways mainly included the interleukin-17, cell cycle, Wnt, and mineral absorption signaling pathways. Six lncRNAs including AC017002.2 ( P= 0.039), cancer susceptibility 19 (CASC19) ( P= 0.021), LINC00152 ( P= 0.013), NONHSAT058834 ( P= 0.007), NONHSAT007692 ( P= 0.045), and ENST00000415991.1 ( P= 0.045) showed significant differences in expression levels between the cancer tissue and paracancer tissue groups. AC017002.2, NONHSAT058834, NONHSAT007692, and ENST00000415991.1 have not yet been reported in RC. The crucial mRNAs myelocytomatosis viral oncogene (MYC), transforming growth factor beta induced (TGFBI), and solute carrier family 7 member 5 (SLC7A5) were selected. AC017002.2 and LINC00152 were positively correlated with MYC, TGFBI, and cytochrome P450 family 2 sub-family B member 6 (All r > 0.900, P < 0.050). NONHSAT058834 was positively associated with MYC ( r = 0.930, P < 0.001), and CASC19 was positively correlated with SLC7A5 ( r= 0.922, P < 0.001). Conclusion::This study offers convincing evidence of differentially expressed lncRNAs and mRNAs as potential biomarkers in RC.

More
广告
作者 Wang De-Zhong [1] Chen Guan-Yang [2] Li Yi-Feng [3] Zhang Neng-Wei [1] 学术成果认领
作者单位 Department of Gastroenterology, Liver and Gallbladder Surgery, Peking University Ninth School of Clinical Medicine, Beijing 100038, China [1] The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing 100038, China [2] Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China [3]
栏目名称 Original Article
DOI 10.1097/CM9.0000000000000753
发布时间 2025-03-04
基金项目
This work was supported by a grant from the Beijing Municipal Health Commission’s Key Clinical Specialty (Oncology) This work was supported by a grant from the Beijing Municipal Health Commission’s Key Clinical Specialty (Oncology)
  • 浏览122
  • 下载24
中华医学杂志英文版

中华医学杂志英文版

2020年133卷11期

1312-1321页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

扩展文献

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷