• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia

Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia

摘要Background::Sarcopenia is an age-related progressive skeletal muscle disorder involving the loss of muscle mass or strength and physiological function. Efficient and precise AI algorithms may play a significant role in the diagnosis of sarcopenia. In this study, we aimed to develop a machine learning model for sarcopenia diagnosis using clinical characteristics and laboratory indicators of aging cohorts.Methods::We developed models of sarcopenia using the baseline data from the West China Health and Aging Trend (WCHAT) study. For external validation, we used the Xiamen Aging Trend (XMAT) cohort. We compared the support vector machine (SVM), random forest (RF), eXtreme Gradient Boosting (XGB), and Wide and Deep (W&D) models. The area under the receiver operating curve (AUC) and accuracy (ACC) were used to evaluate the diagnostic efficiency of the models.Results::The WCHAT cohort, which included a total of 4057 participants for the training and testing datasets, and the XMAT cohort, which consisted of 553 participants for the external validation dataset, were enrolled in this study. Among the four models, W&D had the best performance (AUC = 0.916 ± 0.006, ACC = 0.882 ± 0.006), followed by SVM (AUC = 0.907 ± 0.004, ACC = 0.877 ± 0.006), XGB (AUC = 0.877 ± 0.005, ACC = 0.868 ± 0.005), and RF (AUC = 0.843 ± 0.031, ACC = 0.836 ± 0.024) in the training dataset. Meanwhile, in the testing dataset, the diagnostic efficiency of the models from large to small was W&D (AUC = 0.881, ACC = 0.862), XGB (AUC = 0.858, ACC = 0.861), RF (AUC = 0.843, ACC = 0.836), and SVM (AUC = 0.829, ACC = 0.857). In the external validation dataset, the performance of W&D (AUC = 0.970, ACC = 0.911) was the best among the four models, followed by RF (AUC = 0.830, ACC = 0.769), SVM (AUC = 0.766, ACC = 0.738), and XGB (AUC = 0.722, ACC = 0.749).Conclusions::The W&D model not only had excellent diagnostic performance for sarcopenia but also showed good economic efficiency and timeliness. It could be widely used in primary health care institutions or developing areas with an aging population.Trial Registration::Chictr.org, ChiCTR 1800018895.

更多

abstractsBackground::Sarcopenia is an age-related progressive skeletal muscle disorder involving the loss of muscle mass or strength and physiological function. Efficient and precise AI algorithms may play a significant role in the diagnosis of sarcopenia. In this study, we aimed to develop a machine learning model for sarcopenia diagnosis using clinical characteristics and laboratory indicators of aging cohorts.Methods::We developed models of sarcopenia using the baseline data from the West China Health and Aging Trend (WCHAT) study. For external validation, we used the Xiamen Aging Trend (XMAT) cohort. We compared the support vector machine (SVM), random forest (RF), eXtreme Gradient Boosting (XGB), and Wide and Deep (W&D) models. The area under the receiver operating curve (AUC) and accuracy (ACC) were used to evaluate the diagnostic efficiency of the models.Results::The WCHAT cohort, which included a total of 4057 participants for the training and testing datasets, and the XMAT cohort, which consisted of 553 participants for the external validation dataset, were enrolled in this study. Among the four models, W&D had the best performance (AUC = 0.916 ± 0.006, ACC = 0.882 ± 0.006), followed by SVM (AUC = 0.907 ± 0.004, ACC = 0.877 ± 0.006), XGB (AUC = 0.877 ± 0.005, ACC = 0.868 ± 0.005), and RF (AUC = 0.843 ± 0.031, ACC = 0.836 ± 0.024) in the training dataset. Meanwhile, in the testing dataset, the diagnostic efficiency of the models from large to small was W&D (AUC = 0.881, ACC = 0.862), XGB (AUC = 0.858, ACC = 0.861), RF (AUC = 0.843, ACC = 0.836), and SVM (AUC = 0.829, ACC = 0.857). In the external validation dataset, the performance of W&D (AUC = 0.970, ACC = 0.911) was the best among the four models, followed by RF (AUC = 0.830, ACC = 0.769), SVM (AUC = 0.766, ACC = 0.738), and XGB (AUC = 0.722, ACC = 0.749).Conclusions::The W&D model not only had excellent diagnostic performance for sarcopenia but also showed good economic efficiency and timeliness. It could be widely used in primary health care institutions or developing areas with an aging population.Trial Registration::Chictr.org, ChiCTR 1800018895.

More
广告
作者 Zhang He [1] Yin Mengting [1] Liu Qianhui [1] Ding Fei [1] Hou Lisha [2] Deng Yiping [2] Cui Tao [3] Han Yixian [3] Pang Weiguang [4] Ye Wenbin [5] Yue Jirong [2] He Yong [1] 学术成果认领
作者单位 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [1] Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2] Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China [3] Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning 110819, China [4] Department of Geriatrics, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian 361015, China. [5]
栏目名称 Original Article
DOI 10.1097/CM9.0000000000002633
发布时间 2025-02-25
基金项目
National Key R&D Program of China
  • 浏览7
  • 下载0
中华医学杂志英文版

中华医学杂志英文版

2023年136卷8期

967-973页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

扩展文献

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷