• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Metabolic plasticity of T cell fate decision

Metabolic plasticity of T cell fate decision

摘要The efficacy of adaptive immune responses in cancer treatment relies heavily on the state of the T cells. Upon antigen exposure, T cells undergo metabolic reprogramming, leading to the development of functional effectors or memory populations. However, within the tumor microenvironment (TME), metabolic stress impairs CD8 + T cell anti-tumor immunity, resulting in exhausted differentiation. Recent studies suggested that targeting T cell metabolism could offer promising therapeutic opportunities to enhance T cell immunotherapy. In this review, we provide a comprehensive summary of the intrinsic and extrinsic factors necessary for metabolic reprogramming during the development of effector and memory T cells in response to acute and chronic inflammatory conditions. Furthermore, we delved into the different metabolic switches that occur during T cell exhaustion, exploring how prolonged metabolic stress within the TME triggers alterations in cellular metabolism and the epigenetic landscape that contribute to T cell exhaustion, ultimately leading to a persistently exhausted state. Understanding the intricate relationship between T cell metabolism and cancer immunotherapy can lead to the development of novel approaches to improve the efficacy of T cell-based treatments against cancer.

更多

abstractsThe efficacy of adaptive immune responses in cancer treatment relies heavily on the state of the T cells. Upon antigen exposure, T cells undergo metabolic reprogramming, leading to the development of functional effectors or memory populations. However, within the tumor microenvironment (TME), metabolic stress impairs CD8 + T cell anti-tumor immunity, resulting in exhausted differentiation. Recent studies suggested that targeting T cell metabolism could offer promising therapeutic opportunities to enhance T cell immunotherapy. In this review, we provide a comprehensive summary of the intrinsic and extrinsic factors necessary for metabolic reprogramming during the development of effector and memory T cells in response to acute and chronic inflammatory conditions. Furthermore, we delved into the different metabolic switches that occur during T cell exhaustion, exploring how prolonged metabolic stress within the TME triggers alterations in cellular metabolism and the epigenetic landscape that contribute to T cell exhaustion, ultimately leading to a persistently exhausted state. Understanding the intricate relationship between T cell metabolism and cancer immunotherapy can lead to the development of novel approaches to improve the efficacy of T cell-based treatments against cancer.

More
广告
作者 Pan Xiaoli [1] Wang Jiajia [1] Zhang Lianjun [1] Li Guideng [1] Huang Bo [2] 学术成果认领
作者单位 National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences amp; Peking Union Medical College, Suzhou, Jiangsu 215123, China [1] Department of Immunology amp; National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) amp; Peking Union Medical College, Beijing 100005, China [2]
栏目名称 Review Article
DOI 10.1097/CM9.0000000000002989
发布时间 2025-03-04
基金项目
National Natural Science Foundation of China Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences Haihe Laboratory of Cell Ecosystem Innovation Fund Natural Science Foundation Outstanding Youth Fund of Jiangsu Province
  • 浏览16
  • 下载0
中华医学杂志英文版

中华医学杂志英文版

2024年137卷7期

762-775页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

扩展文献

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷