Caloric restriction, Sirtuins, and cardiovascular diseases
Caloric restriction, Sirtuins, and cardiovascular diseases
摘要Caloric restriction (CR) is a well-established dietary intervention known to extend healthy lifespan and exert positive effects on aging-related diseases, including cardiovascular conditions. Sirtuins, a family of nicotinamide adenine dinucleotide (NAD +)-dependent histone deacetylases, have emerged as key regulators of cellular metabolism, stress responses, and the aging process, serving as energy status sensors in response to CR. However, the mechanism through which CR regulates Sirtuin function to ameliorate cardiovascular disease remains unclear. This review not only provided an overview of recent research investigating the interplay between Sirtuins and CR, specifically focusing on their potential implications for cardiovascular health, but also provided a comprehensive summary of the benefits of CR for the cardiovascular system mediated directly via Sirtuins. CR has also been shown to have considerable impact on specific metabolic organs, leading to the production of small molecules that enter systemic circulation and subsequently regulate Sirtuin activity within the cardiovascular system. The direct and indirect effects of CR offer a potential mechanism for Sirtuin modulation and subsequent cardiovascular protection. Understanding the interplay between CR and Sirtuins will provide new insights for the development of interventions to prevent and treat cardiovascular diseases.
更多相关知识
abstractsCaloric restriction (CR) is a well-established dietary intervention known to extend healthy lifespan and exert positive effects on aging-related diseases, including cardiovascular conditions. Sirtuins, a family of nicotinamide adenine dinucleotide (NAD +)-dependent histone deacetylases, have emerged as key regulators of cellular metabolism, stress responses, and the aging process, serving as energy status sensors in response to CR. However, the mechanism through which CR regulates Sirtuin function to ameliorate cardiovascular disease remains unclear. This review not only provided an overview of recent research investigating the interplay between Sirtuins and CR, specifically focusing on their potential implications for cardiovascular health, but also provided a comprehensive summary of the benefits of CR for the cardiovascular system mediated directly via Sirtuins. CR has also been shown to have considerable impact on specific metabolic organs, leading to the production of small molecules that enter systemic circulation and subsequently regulate Sirtuin activity within the cardiovascular system. The direct and indirect effects of CR offer a potential mechanism for Sirtuin modulation and subsequent cardiovascular protection. Understanding the interplay between CR and Sirtuins will provide new insights for the development of interventions to prevent and treat cardiovascular diseases.
More相关知识
- 浏览22
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文