• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

An advanced machine learning method for simultaneous breast cancer risk prediction and risk ranking in Chinese population: A prospective cohort and modeling study

An advanced machine learning method for simultaneous breast cancer risk prediction and risk ranking in Chinese population: A prospective cohort and modeling study

摘要Background::Breast cancer (BC) risk-stratification tools for Asian women that are highly accurate and can provide improved interpretation ability are lacking. We aimed to develop risk-stratification models to predict long- and short-term BC risk among Chinese women and to simultaneously rank potential non-experimental risk factors.Methods::The Breast Cancer Cohort Study in Chinese Women, a large ongoing prospective dynamic cohort study, includes 122,058 women aged 25-70 years old from the eastern part of China. We developed multiple machine-learning risk prediction models using parametric models (penalized logistic regression, bootstrap, and ensemble learning), which were the short-term ensemble penalized logistic regression (EPLR) risk prediction model and the ensemble penalized long-term (EPLT) risk prediction model to estimate BC risk. The models were assessed based on calibration and discrimination, and following this assessment, they were externally validated in new study participants from 2017 to 2020.Results::The AUC values of the short-term EPLR risk prediction model were 0.800 for the internal validation and 0.751 for the external validation set. For the long-term EPLT risk prediction model, the area under the receiver operating characteristic curve was 0.692 and 0.760 in internal and external validations, respectively. The net reclassification improvement index of the EPLT relative to the Gail and the Han Chinese Breast Cancer Prediction Model (HCBCP) models for external validation was 0.193 and 0.233, respectively, indicating that the EPLT model has higher classification accuracy.Conclusions::We developed the EPLR and EPLT models to screen populations with a high risk of developing BC. These can serve as useful tools to aid in risk-stratified screening and BC prevention.

更多

abstractsBackground::Breast cancer (BC) risk-stratification tools for Asian women that are highly accurate and can provide improved interpretation ability are lacking. We aimed to develop risk-stratification models to predict long- and short-term BC risk among Chinese women and to simultaneously rank potential non-experimental risk factors.Methods::The Breast Cancer Cohort Study in Chinese Women, a large ongoing prospective dynamic cohort study, includes 122,058 women aged 25-70 years old from the eastern part of China. We developed multiple machine-learning risk prediction models using parametric models (penalized logistic regression, bootstrap, and ensemble learning), which were the short-term ensemble penalized logistic regression (EPLR) risk prediction model and the ensemble penalized long-term (EPLT) risk prediction model to estimate BC risk. The models were assessed based on calibration and discrimination, and following this assessment, they were externally validated in new study participants from 2017 to 2020.Results::The AUC values of the short-term EPLR risk prediction model were 0.800 for the internal validation and 0.751 for the external validation set. For the long-term EPLT risk prediction model, the area under the receiver operating characteristic curve was 0.692 and 0.760 in internal and external validations, respectively. The net reclassification improvement index of the EPLT relative to the Gail and the Han Chinese Breast Cancer Prediction Model (HCBCP) models for external validation was 0.193 and 0.233, respectively, indicating that the EPLT model has higher classification accuracy.Conclusions::We developed the EPLR and EPLT models to screen populations with a high risk of developing BC. These can serve as useful tools to aid in risk-stratified screening and BC prevention.

More
广告
作者 Liu Liyuan [1] He Yong [2] Kao Chunyu [3] Fan Yeye [2] Yang Fu [3] Wang Fei [1] Yu Lixiang [1] Zhou Fei [1] Xiang Yujuan [1] Huang Shuya [1] Zheng Chao [1] Cai Han [1] Bao Heling [4] Fang Liwen [5] Wang Linhong [5] Chen Zengjing [2] Yu Zhigang [1] 学术成果认领
作者单位 Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China [1] School of Mathematics, Shandong University, Jinan, Shandong 250100, China [2] Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, Shandong 250100, China [3] Department of Maternal and Child Health, School of Public Health, Peking University, Haidian District, Beijing 100191, China [4] National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China [5]
栏目名称 Original Article
DOI 10.1097/CM9.0000000000002891
发布时间 2025-03-04
基金项目
China Postdoctoral Science Foundation National Key Research and Development Program of China Minister-affiliated Hospital Key Project of the Ministry of Health of China General Programs of Natural Science Foundation of Shandong Province
  • 浏览10
  • 下载0
中华医学杂志英文版

中华医学杂志英文版

2024年137卷17期

2084-2091页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

扩展文献

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷