• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于深度神经网络的战场模拟伤员数据增强模型研究

Research on data augmentation model of battlefield simulated casualty based on deep neural networks

摘要为了提高卫勤模拟训练的效果,基于战伤严重度评分并综合运用深度神经网络(DNN)建模技术,建立一种新的战伤数据增强模型(WTSS-DNN),用于准确统计卫勤模拟训练系统中的伤员数据,并构建满足卫勤组织指挥要求、符合战时伤员救治特征的战场模拟伤员。WTSS-DNN相较于传统的人工数据生成方法,在保持后果预测准确性和伤情合理性的前提下,可以自动化、大规模地生成战伤伤员数据,对战伤数据分析研究、战时伤员伤情快速评估及分级后送具有重要意义。

更多

abstractsIn order to improve the outcome of medical service simulation training,an augmented model of war trauma data(WTSS-DNN)is developed based on the war trauma severity score and comprehensive application of deep neural network modeling technology. The model is used to augment the data of casualty in the medical service simulation training system,so as to simulate the battlefield casualty with the characteristics of casualty treatment in real combat conditions and meet the requirements of the medical service organization and commanding. Compared with the traditional method that generates the data of casualty manually,WTSS-DNN can automatically and massively generate the data of casualty on the premise of maintaining the accuracy of consequence prediction and the rationality of casualty conditions,which is of great significance for the analysis and research of the war trauma data,rapidly assessing casualties’ condition,and evacuating according to triaging.

More
广告
  • 浏览106
  • 下载0
中华航海医学与高气压医学杂志

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

扩展文献

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷