• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于双参数磁共振影像组学模型评估前列腺癌风险分级的应用

摘要目的 探讨基于双参数磁共振成像影像组学特征构建支持向量机(SVM)及随机森林(RF)两种机器学习模型预测前列腺癌风险分级的诊断作用.方法 回顾性纳入经病理确诊为前列腺癌患者119例,其中中低危组57例,高危组62例,入组患者均在术前2个月内行MRI检查.分别提取基于T2WI、ADC序列的影像组学特征.将入组患者按7:3比例随机分为训练组和测试组.根据筛选后的影像组学特征分别建立基于T2WI、ADC、T2WI+ADC的SVM模型及RF模型,用测试组对模型进行验模型验证,检验每一种模型的准确率、特异性、敏感性并绘制受试者操作特征曲线(ROC).采用曲线下面积(AUC)评估影像组学模型对前列腺癌风险分级的预测效能.结果 基于T2WI序列建立的SVM模型、RF模型的AUC分别为0.797、0.713;基于ADC序列建立的SVM模型、RF模型的AUC分别为0.826、0.667;T2WI+ADC序列建立SVM模型、RF模型的AUC分别0.871、0.724.联合双参数的模型预测效能优于单参数模型.结论 本研究构建的基于双参数磁共振的SVM及RF模型在一定程度上能预测前列腺癌风险分级,其中T2WI+ADC的SVM模型分类效果更佳,有潜力应用于临床以指导前列腺癌患者的个体化治疗.

更多
广告
  • 浏览33
  • 下载14
浙江临床医学

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷