Predicting gene essentiality in <i>Caenorhabditis elegans</i> by feature engineering and machine-learning.
作者:
关键词
CDS, coding sequenceCRISPR, Clustered Regularly Interspaced Short Palindromic RepeatsCaenorhabditis elegansES, Essentiality ScoreEST, expressed sequence tagEssential genesEssentiality predictionsGBM, Gradient Boosting MethodGFF, general feature formatGLM, Generalised Linear ModelGO, gene ontologyML, machine-learningMachine-learningNN, Artificial Neural NetworkPPI, protein-protein interactionPR-AUC, Area Under the Precision-Recall CurveRF, Random ForestRNAi, RNA interferenceROC-AUC, Area Under the Receiver Operating Characteristic CurveSNP, single nucleotide polymorphismSPLS, Sparse Partial Least SquaresSVM, Support-Vector MachineTEA, Tissue Enrichment Analysis tool (WormBase)TSS, transcription start siteVCF, variant call file
DOI
10.1016/j.csbj.2020.05.008
PMID
32489524
发布时间
2020-09-28
- 浏览0
相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文