Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion.
第一单位:
College of Informatics and Computing Sciences, Batangas State University, Philippines.
作者:
关键词
AP, Average PoolingAUC, Area Under the CurveBN, Batch NormalizationBS, Batch SizeCAD, Computer-Aided DiagnosisCCE, Categorical Cross-EntropyCNN, Convolutional Neural NetworksCT, Computer TomographyCV, Computer VisionCXR, Chest X-RaysChest x-raysComputer-aided diagnosisCovid-19DCNN, Deep Convolutional Neural NetworksDL, Deep LearningDR, Dropout RateDeep learningDensely connected neural networksGAP, Global Average PoolingGRAD-CAM, Gradient-Weighted Class Activation MapsJPG, Joint Photographic GroupLR, Learning RateMP, Max-PoolingP-R, Precision-RecallPEPX, Projection-Expansion-Projection-ExtensionROC, Receiver Operating CharacteristicReLU, Rectified Linear UnitSGD, Stochastic Gradient DescentWHO, World Health OrganizationrRT-PCR, real-time Reverse-Transcription Polymerase Chain Reaction
DOI
10.1016/j.bspc.2021.102583
PMID
33828610
发布时间
2024-09-08
- 浏览4
相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



