医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

CM-SegNet: A deep learning-based automatic segmentation approach for medical images by combining convolution and multilayer perceptron.

广告
第一作者: Wenyu,Xing
第一单位: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China; Human Phenome Institute, Fudan University, Shanghai, 200438, China.
作者: Wenyu,Xing [1] ; Zhibin,Zhu [2] ; Dongni,Hou [3] ; Yaoting,Yue [1] ; Fei,Dai [4] ; Yifang,Li [5] ; Lin,Tong [6] ; Yuanlin,Song [6] ; Dean,Ta [7]
作者单位: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China; Human Phenome Institute, Fudan University, Shanghai, 200438, China. [1] School of Physics and Electromechanical Engineering, Hexi University, Zhangye, 734000, China. [2] Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China. Electronic address: hou.dongni@zs-hospital.sh.cn. [3] Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China. [4] Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China. [5] Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China. [6] Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address: tda@fudan.edu.cn. [7]
DOI 10.1016/j.compbiomed.2022.105797
PMID 35780603
发布时间 2022-09-16
提交
  • 浏览0
Computers in biology and medicine

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷