医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Augmenting Kalman Filter Machine Learning Models with Data from OCT to Predict Future Visual Field Loss: An Analysis Using Data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovation in Glaucoma Study.

广告
第一作者: Mohammad,Zhalechian
第一单位: Department of Industrial and Operations Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan.
作者单位: Department of Industrial and Operations Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan. [1] Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York. [2] Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama. [3] Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, California. [4] Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan.;Center for Eye Policy and Innovation, University of Michigan, Ann Arbor, Michigan. [5] Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan.;Center for Eye Policy and Innovation, University of Michigan, Ann Arbor, Michigan.;Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, Michigan. [6]
DOI 10.1016/j.xops.2021.100097
PMID 36246178
发布时间 2024-02-28
提交
  • 浏览0
Ophthalmology science

Ophthalmology science

2022年2卷1期

100097页

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷