Augmenting Kalman Filter Machine Learning Models with Data from OCT to Predict Future Visual Field Loss: An Analysis Using Data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovation in Glaucoma Study.
第一作者:
Mohammad,Zhalechian
第一单位:
Department of Industrial and Operations Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan.
作者:
关键词
AD, African descentADAGES, African Descent and Glaucoma Evaluation StudyAlgorithm biasCI, confidence intervalD, diopterDIGS, Diagnostic Innovation in Glaucoma StudyED, European descentGlaucomaIOP, intraocular pressureKF, Kalman filterKF-TP, Kalman filter with tonometry and perimetry dataKF-TPO, Kalman filter with tonometry, perimetry, and global retinal nerve fiber layer dataKalman filterLR1, linear regression model 1LR2, linear regression model 2MAE, mean absolute errorMD, mean deviationMachine learningOAG, open-angle glaucomaOCTPSD, pattern standard deviationRMSE, root mean square errorRNFL, retinal nerve fiber layerSD, standard deviationVF, visual field
DOI
10.1016/j.xops.2021.100097
PMID
36246178
发布时间
2024-02-28
- 浏览0
Ophthalmology science
2022年2卷1期
100097页
相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



