CNN6mA: Interpretable neural network model based on position-specific CNN and cross-interactive network for 6mA site prediction.
第一作者:
Sho,Tsukiyama
第一单位:
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
作者:
关键词
6mA, N6-methyladenineAUCs, Area under the curvesBERT, Bidirectional Encoder Representations from TransformersCNNCNN, Convolutional neural networkDNA modificationDeep learningInterpretable predictionLSTM, Long short-term memoryMCC, Matthews correlation coefficientMachine learningN6-methyladenineRF, Random forestSMRT, Single-molecule real-timeSN, SensitivitySP, SpecificityUMAP, Uniform manifold approximation and projectiont-SNE, t-distributed stochastic neighbor embedding
DOI
10.1016/j.csbj.2022.12.043
PMID
36659917
发布时间
2023-01-21
- 浏览0
相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



