医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Optimizing Inference Distribution for Efficient Kidney Tumor Segmentation Using a UNet-PWP Deep-Learning Model with XAI on CT Scan Images.

广告
第一作者: P Kiran,Rao
第一单位: Artificial Intelligence, Department of Computer Science and Engineering, Ravindra College of Engineering for Women, Kurnool 518001, India.;Department of Computer Science and Engineering, Faculty of Engineering, MS Ramaiah University of Applied Sciences, Bengaluru 560058, India.
作者单位: Artificial Intelligence, Department of Computer Science and Engineering, Ravindra College of Engineering for Women, Kurnool 518001, India.;Department of Computer Science and Engineering, Faculty of Engineering, MS Ramaiah University of Applied Sciences, Bengaluru 560058, India. [1] Department of Computer Science and Engineering, Faculty of Engineering, MS Ramaiah University of Applied Sciences, Bengaluru 560058, India. [2] Artificial Intelligence, Department of Computer Science and Engineering, G. Pullaiah College of Engineering and Technology, Kurnool 518008, India. [3] Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing Kurnool, Kurnool 518008, India. [4] Department of Data Science, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK.;Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon. [5] Department of Business Administration, College of Business and Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia. [6] Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh 21911, Saudi Arabia. [7]
DOI 10.3390/diagnostics13203244
PMID 37892065
发布时间 2023-10-30
提交
  • 浏览0
Diagnostics (Basel, Switzerland)

Diagnostics (Basel, Switzerland)

2023年13卷20期

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷