医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Generalized Functional Linear Models:Efficient Modeling for High-dimensional Correlated Mixture Exposures

摘要Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment,including high dimensionality,correlated exposure,and subtle individual effects.Methods We proposed a novel statistical approach,the generalized functional linear model(GFLM),to analyze the health effects of exposure mixtures.GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation.The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.Results We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey(NHANES).In the first application,we examined the effects of 37 nutrients on BMI(2011-2016 cycles).The GFLM identified a significant mixture effect,with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI,respectively.For the second application,we investigated the association between four pre-and perfluoroalkyl substances(PFAS)and gout risk(2007-2018 cycles).Unlike traditional methods,the GFLM indicated no significant association,demonstrating its robustness to multicollinearity.Conclusion GFLM framework is a powerful tool for mixture exposure analysis,offering improved handling of correlated exposures and interpretable results.It demonstrates robust performance across various scenarios and real-world applications,advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.

更多
广告
作者 Bingsong Zhang [1] Haibin Yu [1] Xin Peng [1] Haiyi Yan [1] Siran Li [1] Shutong Luo [2] Renhuizi Wei [3] Zhujiang Zhou [1] Yalin Kuang [1] Yihuan Zheng [1] Chulan Ou [1] Linhua Liu [4] Yuehua Hu [5] Jindong Ni [6] 学术成果认领
作者单位 Department of Epidemiology and Biostatistics,School of Public Health,Guangdong Medical University,Dongguan 523808,Guangdong,China [1] Herbert Wertheim School of Public Health,Warrant College,University of California San Diago 92037,U.S.A [2] Office of Quality Management,Hospital of Huangjiang Dongguan,Dongguan 523750,Guangdong,China [3] Dongguan Key Laboratory of Environmental Medicine,School of Public Health,Guangdong Medical University,Dongguan 523808,Guangdong,China [4] Office of Epidemiology,Chinese Center for Disease Control and Prevention,Beijing 102206,China [5] Precision Key Laboratory of Public Health,School of Public Health,Guangdong Medical University,Dongguan 523808,Guangdong,China;Maternal and Child Research Institute,Shunde Women and Children's Hospital,Guangdong Medical University,Foshan 528300,Guangdong,China [6]
栏目名称
DOI 10.3967/bes2025.024
发布时间 2025-09-22(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览2
  • 下载0
生物医学与环境科学(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷