摘要虽然现有基于深度学习的压缩感知磁共振成像(CS-MRI)方法已经取得了较好的效果,但这些方法的可解释性仍然面临挑战,并且从理论分析到网络设计的过渡并不够自然.为解决上述问题,提出深度双域几何蒸馏特征自适应网络(DDGD-FANet).该深度展开网络将磁共振成像重建优化问题迭代展开成3个子部分:数据一致性模块、双域几何蒸馏模块和自适应网络模块,不仅可以补偿重建图像丢失的上下文信息,恢复更多的纹理细节,还可以去除全局伪影,进一步提高重建效果.在公开数据集使用3种不同的采样模式进行实验,结果表明:DDGD-FANet在3种采样模式下均取得了更高的峰值信噪比和结构相似性指数,在笛卡儿10%压缩感知(CS)比率下,峰值信噪比较迭代收缩阈值算法(ISTA-Net+)、快速ISTA(FISTA)-Net和DGDN模型分别提高了5.01 dB、4.81 dB 和 3.34 dB.
更多相关知识
- 浏览0
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



