医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

眼底图像中硬性渗出物检测算法

Algorithm of hard exudates detection in fundus image

摘要目的 利用眼底图像中硬性渗出物(hard exudates,HE)的亮度与边缘特征,提出一种基于Canny边缘检测算法与形态学重构相结合的HE自动检测方法 ,以解决目前算法灵敏度低、检测结果 中视盘和血管的干扰等问题,对糖尿病视网膜病变(diabetic retinopathy,DR)的自动筛查具有重要意义.方法检测算法包括4个步骤.步骤一,图像预处理,主要包括RGB通道选取、基于形态学的图像对比度增强.步骤二,视网膜图像关键结构的消除,利用基于Gabor滤波的血管分割方法,消除血管边缘对HE检测的影响.将本文视杯分割算法应用在眼底图像红色通道上实现视盘自动分割,消除视盘及其边缘对HE检测的影响.步骤三,利用改进的Canny边缘检测算法和形态学重构方法对HE进行提取.步骤四,基于形态学的图像后处理,消除眼底图像边缘部分假阳性区域.最后利用该算法测试公开数据库中的40幅图像(35幅HE病变图像,5幅正常图像).结果该算法对基于病变的灵敏性(sensitivity,SE)和阳性预测值(positive predictive value,PPV)分别为93.18%和79.26%,基于图像的灵敏性、特异性(specificity,SP)和准确率(accuracy,ACC)分别为97.14% 、80.00%和95.00%.结论 与其他方法对比,基于Canny边缘检测算法与形态学重构相结合的HE自动检测算法具有较好的可行性.

更多
广告
  • 浏览186
  • 下载25
北京生物医学工程

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷