• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于卷积神经网络的眼科光学相干断层成像图像的自动分类

Automatic classification of ophthalmic optical coherence tomography images based on the convolution neural network

摘要目的 提出一种基于卷积神经网络(convolutional neural network,CNN)的眼科光学相干断层成像(optical coherence tomography,OCT)图像自动分类方法,实现对视网膜OCT图像的自动分类,缓解人工诊断依赖医生的临床经验、费时费力等问题.方法 基于公开的数据集2014_BOE_Srinivasan构建了2个样本数据集.其中样本数据集一为仅对数据集中的图像进行预处理后裁剪,样本数据集二为对取出测试集后剩余图像的裁剪过程中引入随机平移和水平翻转技术对图像进行扩充,并划分为训练集和验证集.搭建基于CNN的视网膜OCT图像分类网络,并分别使用两个数据集训练网络得到分类模型.最后使用独立的测试集对模型进行测试,并通过输出混淆矩阵查看模型对3种类别图像的分类情况.结果 通过混淆矩阵计算得出,使用扩充后的图像训练的分类模型的准确度为93.43%,灵敏度为91.38%,特异度为95.88%.结论 提出的基于CNN的视网膜OCT图像自动分类方法可以对老年性黄斑变性、糖尿病性黄斑水肿和正常3种类别的视网膜OCT图像进行分类.同时,数据扩充有助于提高分类算法的性能.

更多
广告
分类号 R318.04
栏目名称 论著
DOI 10.3969/j.issn.1002-3208.2021.06.002.
发布时间 2021-12-23
基金项目
国家自然科学基金 北京市自然科学基金
  • 浏览67
  • 下载1
北京生物医学工程

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷