医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于模态交互学习的多源心脏图像分割方法研究

Research on multi-source cardiac image segmentation method based on modal interaction learning

摘要目的 通过研究和搭建人工智能深度学习网络,实现多模态心脏磁共振(cardiac magnetic resonance,CMR)图像分割,并提升Dice系数.材料与方法 回顾性分析来自2019年多序列CMR分割挑战赛的公开数据集,它包含了45例患者平衡稳态自由进动(balanced-steady state free precession,bSSFP)模态,晚期钆增强(late gadolinium enhancement,LGE)模态与T2WI模态的CMR图像数据.本文构建了一种新的双流U型网络框架,实现bSSFP与LGE两种模态以及bSSFP与T2WI两种模态的CMR图像分割.在编码阶段,未配准各模态图像被交替地送入各自分支进行特征学习,所获取的特征图接着都流入共享层,实现多模态信息的交互补充,最终共享特征分开流出到各自分支进行解码输出.通过在45例患者的CMR图像数据集上进行五折交叉验证实验,分别对bSSFP与LGE模态、bSSFP与T2WI模态进行了分割,以Dice系数对提出的模型进行性能评估,Wilcoxon符号秩检验被用来检验模型差异性.结果 在bSSFP与LGE模态的分割实验中,本文方法在bSSFP模态的平均Dice系数相较于传统UNet模型和最新的Swin-Unet模型都有显著提升(P<0.001);在LGE模态的平均Dice系数较传统UNet模型(P<0.001)、Swin-Unet模型(P=0.001)、双流UNet(P=0.021)均有显著提升.在bSSFP与T2WI模态的分割实验中,本文方法在bSSFP模态的平均Dice系数较UNet模型、Swin-Unet模型与双流UNet均有显著提升(P<0.001);在T2WI模态的平均Dice系数较UNet模型有显著提升(P<0.001),较Swin-Unet模型有提升(P=0.025).结论 本研究提出的双流U型网络框架为CMR图像多模态分割提供有效方法,且该网络提高了CMR图像bSSFP模态与LGE模态及bSSFP模态与T2WI模态的Dice系数,很好地解决了多模态CMR图像个体解剖学差异大和图像间存在灰度不一致问题,提升了模型的泛化能力.

更多
广告
  • 浏览45
  • 下载7
磁共振成像

磁共振成像

2024年15卷4期

145-152页

ISTICPKUCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷