• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

多序列MRI影像组学在脑膜瘤鉴别诊断中的价值

The value of multi-sequence MRI-based radiomics in differential diagnosis of meningioma

摘要目的 探讨多序列MRI影像组学特征联合常规征象鉴别诊断脑膜瘤与其他颅内脑膜起源肿瘤的价值.材料与方法 回顾性分析经病理证实的两个中心共360例患者的临床及术前MRI资料.中心1患者256例(脑膜瘤145例、非脑膜瘤111例),按7∶3的比例随机分为训练组(n=179)和测试组(n=77);中心2患者104例作为外部验证组(脑膜瘤53例,非脑膜瘤51例).评估肿瘤的生长部位、生长方式、数目等18项一般临床资料及MRI常规征象,采用单变量及多变量二元logistic回归分析筛选与鉴别诊断相关的指标.图像标准化后,利用3D Slicer软件于T2WI、扩散加权成像(diffusion-weighted imaging,DWI)、T1WI增强图像勾画感兴趣区(region of interest,ROI)并进行特征提取;采用5折交叉验证法和最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)进行特征筛选.训练组、测试组采用逻辑回归(logistic regression,LR)、支持向量机(support vector machine,SVM)、K近邻(K-nearest neighbor,KNN)、轻量级梯度提升机(light gradient boosting machine,LightGBM)、自适应增强(adaptive boosting,AdaBoost)5种分类器进行建模,建立MRI常规模型、组学瘤内模型、组学瘤周模型、组学融合模型、全融合模型,筛选出其中效能最佳的模型进行外部验证.绘制受试者工作特征(receiver operating characteristic,ROC)曲线,评估模型的鉴别诊断效能;使用DeLong检验对模型曲线下面积(area under the curve,AUC)进行比较;使用决策曲线分析(decision curve analysis,DCA)评估模型的临床价值.结果 不同分类器构建的同一模型效能不同,其中SVM模型整体效能较高,测试组组学瘤内SVM模型AUC为0.889,除此之外训练组、测试组所有SVM模型AUC均大于0.900.组学瘤内模型、组学瘤周模型效能相当,二者均高于MRI常规模型;组学融合模型效能高于三者,但全融合模型效能最佳;其在外部验证组中亦表现良好,AUC为0.925,准确率为88.5%,DCA显示该模型在大范围阈值内可以为患者带来临床净收益.结论 基于多序列MRI影像组学特征模型可以在术前鉴别脑膜瘤与其他颅内脑膜起源肿瘤,联合常规征象可以提升模型效能;不同分类器对模型效能有影响,SVM模型效能高,稳健且泛化能力好.

更多
广告
  • 浏览71
  • 下载40
磁共振成像

磁共振成像

2024年15卷5期

47-54页

ISTICPKUCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷