医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于多参数MRI影像组学鉴别非肿块型乳腺癌和非哺乳期乳腺炎

Differentiating non-mass breast cancer and non-lactational mastitis based on multi-parameter MRI radiomics

摘要目的 探讨基于多参数磁共振成像(magnetic resonance imaging,MRI)的影像组学模型对非肿块型乳腺癌和非哺乳期乳腺炎(non-lactating mastitis,NLM)的鉴别诊断价值.材料与方法 回顾性收集2020年6月至2024年6月于新疆医科大学附属中医医院经病理证实为非肿块型乳腺癌和NLM的患者MRI资料共193例,其中非肿块型乳腺癌100例,NLM 93例.两组患者病灶总数 225个,其中乳腺癌 110个(48.89%),NLM 115个(51.11%).按 7∶3随机划分为训练集(157例)和测试集(68例),采用支持向量机(support vector machines,SVM)机器学习算法对动态增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)第1、4、7期(即CE1、CE4、CE7)、T2加权成像(T2-weighted imaging,T2WI)和扩散加权成像(diffusion weighted imaging,DWI)这5个序列的数据分别构建单序列模型、多参数MRI模型,并联合5个序列数据和临床特征建立融合模型,通过受试者工作特征(receiver operating characteristic,ROC)曲线、校准曲线、决策曲线分析(decision curve analysis,DCA)评价不同模型的性能,并使用SHAP图形对模型进行解释及可视化.结果 单序列模型进行对比,CE1、CE4、CE7、T2WI和DWI序列在测试集的曲线下面积(area under the curve,AUC)分别为0.768、0.804、0.746、0.769、0.812,DWI在测试集的AUC最高,其次是CE4;多参数MRI模型在测试集的AUC为0.840(95%置信区间:0.749~0.932)],而融合模型在测试集的AUC为0.866(95%置信区间:0.783~0.948),与CE1、CE4、CE7、T2WI单序列模型相比差异均有统计学意义(P<0.01).结果 显示,融合模型的准确度最高(77.94%);融合模型敏感度最高(90.00%);融合模型和CE4序列的特异度最高(均为68.42%).结论 多参数MRI联合临床特征的融合模型准确度、敏感度和特异度较高,与单序列模型、多参数MRI模型相比预测性能更优,可以为非肿块型乳腺癌和NLM的鉴别诊断提供较高价值.

更多
广告
作者 宋丽俊 [1] 薛志伟 [2] 田兄玲 [2] 贾毅 [2] 马依迪丽·尼加提 [2] 学术成果认领
作者单位 新疆人工智能影像辅助诊断重点实验室,喀什 844000;新疆医科大学附属中医医院医学影像科,乌鲁木齐 830000 [1] 新疆医科大学附属中医医院医学影像科,乌鲁木齐 830000 [2]
栏目名称
DOI 10.12015/issn.1674-8034.2025.08.011
发布时间 2025-08-28(万方平台首次上网日期,不代表论文的发表时间)
  • 浏览8
  • 下载11
磁共振成像

磁共振成像

2025年16卷8期

73-79,94页

ISTICPKUCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷