Transformer在脑肿瘤MRI图像分割中的研究进展
Research progress of Transformer in MRI image segmentation of brain tumors
摘要脑肿瘤精准分割至关重要,但传统卷积神经网络因局部感受野限制难以建模磁共振成像(magnetic resonance imaging,MRI)中的长距离依赖,影响对异质性高、边界模糊肿瘤的分割精度.Transformer凭借全局自注意力机制为此提供了新思路.本文综述了Transformer在脑肿瘤MRI分割中的进展,重点分析了Transformer模型在层次化注意力、编解码结构、残差连接等关键技术上的改进,探讨了多模态融合、模态缺失应对、轻量化设计及注意力机制本身的创新策略;尽管Transformer显著提升了精度,仍面临数据稀缺、模态缺失鲁棒性、类别不平衡、计算成本高和可解释性不足等挑战,未来需聚焦数据高效利用、模态弹性建模、拓扑感知优化、轻量化与可解释性增强等方向.本文系统梳理了Transfomer在脑肿瘤MRI图像分割领域的研究现状,总结了目前研究的局限性并指出未来的研究方向,本文旨在为深入理解其技术演进、核心挑战与发展方向提供系统性参考.
更多相关知识
- 浏览4
- 被引0
- 下载3

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



