Identification of Potential Therapeutic Targets of Alzheimer's Disease By Weighted Gene Co-Expression Network Analysis
摘要Objective Alzheimer's disease (AD) is the most common cause of dementia. The pathophysiology of the disease mostly remains unearthed, thereby challenging drug development for AD. This study aims to screen high throughput gene expression data using weighted co-expression network analysis (WGCNA) to explore the potential therapeutic targets.Methods The dataset of GSE36980 was obtained from the Gene Expression Omnibus (GEO) database. Normalization, quality control, filtration, and soft-threshold calculation were carried out before clustering the co-expressed genes into different modules. Furthermore, the correlation coefficients between the modules and clinical traits were computed to identify the key modules. Gene ontology and pathway enrichment analyses were performed on the key module genes. The STRING database was used to construct the protein-protein interaction (PPI) networks, which were further analyzed by Cytoscape app (MCODE). Finally, validation of hub genes was conducted by external GEO datasets of GSE 1297 and GSE 28146. Results Co-expressed genes were clustered into 27 modules, among which 6 modules were identified as the key module relating to AD occurrence. These key modules are primarily involved in chemical synaptic transmission (GO:0007268), the tricarboxylic acid (TCA) cycle and respiratory electron transport (R-HSA-1428517). WDR47, OXCT1, C3orf14, ATP6V1A, SLC25A14, NAPB were found as the hub genes and their expression were validated by external datasets. Conclusions Through modules co-expression network analyses and PPI network analyses, we identified the hub genes of AD, including WDR47, OXCT1, C3orf14, ATP6V1A, SLC25A14 and NAPB. Among them, three hub genes (ATP6V1A, SLC25A14, OXCT1) might contribute to AD pathogenesis through pathway of TCA cycle.
更多相关知识
- 浏览27
- 被引2
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文