• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于BP神经网络的在役管线焊缝故障缺陷的分类识别

Weld Defect Classification and Recognition of the In-service Pipeline Based on BP Neural Network

摘要本文利用计算机辅助进行在役管线焊故障缝缺陷检测,在缺陷特征提取中提出圆形度、长宽比、填充度、尖部尖锐度、对称度、灰度比以及缺陷的重心坐标相对焊缝中心的位置等7个参数作为缺陷的特征值,可有效地分类识别不同故障缺陷。在缺陷分类的解决方案上,采用具有自组织、自适应的3层前馈式神经网络,运用改进的BP算法,以焊缝缺陷的特征参数作为神经网络的训练样本。本文还通过实验的方法,分析了初始权值、隐含层的神经元数量、动量系数、误差水平及学习速率对网络训练的影响。

更多
广告
作者 王道阔 [1] 学术成果认领
作者单位 沈阳地铁集团有限公司,沈阳,110000 [1]
分类号 TG115.28
栏目名称 工业CT
发布时间 2012-07-09
  • 浏览66
  • 下载0
CT理论与应用研究

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷