酶复合催化剂原位合成新方法及生物催化应用
Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis
摘要工业生物催化面临两大重要挑战,一是可工业应用的酶催化反应类型仍然比较有限,远少于化学催化剂,因此需要拓展酶催化的反应类型;二是酶在苛刻的工业催化反应条件下尤其是在高温、有机溶剂、不适宜的pH等环境下稳定性较差,因此需要提高工业酶催化剂的稳定性.研究者已经开发了很多方法,以解决这两方面难题,例如酶的定向进化、定点突变、酶的计算机从头设计和构建人工金属酶等.本文系统介绍了本课题组开发的酶复合催化剂原位合成方法及其生物催化应用,期望为解决工业生物催化的上述挑战提供新思路.原位合成是构建酶-无机晶体复合催化剂的一种简便、高效、普适的方法.酶-无机晶体复合物中,限域包埋使酶具有高于常规固定化酶的催化活性和稳定性.该方法可以简便拓展至其它多种类型的无机晶体材料,显著提高酶的稳定性.无机晶体的限域包埋对酶分子结构和性能有着重要影响,通过理性设计复合催化剂的结构,可实现对酶的活性、稳定性以及多酶反应级联效率的有效调控.本课题组采用分子模拟和实验相结合的方法阐释了多酶-无机晶体复合催化剂所驱动的级联反应效率提高的关键因素.通过调控原位合成中金属离子和有机配体的浓度,实现了酶分子在缺陷型甚至无定形载体中的包埋.在此基础上,深入探讨了缺陷对酶分子结构和催化活性的调控机制,为酶复合催化剂的理性设计提供了依据.同样基于原位合成方法,本课题组构建了酶-金属团簇复合催化剂,实现了温和条件下酶催化和金属催化的高效耦合和协同.以脂肪酶-钯团簇复合催化剂为例,阐明了酶-金属团簇复合催化剂中二者相互作用对酶分子结构和活性以及金属催化活性的影响机制,为酶催化和金属催化相融合的研究提供了重要基础.我们对这一领域存在的挑战和未来重要的研究方向也进行了讨论,希望本文可以从催化剂工程角度为高效酶催化剂的设计以及生物催化应用领域的拓展提供新思路,推动该领域发展.
更多相关知识
- 浏览0
- 被引6
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文