摘要心率变异性分析是最常用的一种基于心电信号的疲劳驾驶检测方法.然而,该方法需要被检测信号时间足够长,且准确率较低.因此提出一种基于短时心电信号的疲劳驾驶检测算法.首先,按照30 s的时长截取短时心电信号序列,利用差分阈值法确定R波位置,根据R-R间期差值大小剔除不合格的噪声样本;然后,计算R-R间期序列的时域/频域特征并与利用ImageNet数据集预训练的深度卷积神经网络模型提取的特征相结合;最后,设计了一种随机森林分类器并基于这些特征进行分类.结果表明,该算法在疲劳驾驶检测上具有良好的分类效果,平均准确率达到91%.因此,相较于心率变异性分析方法,本算法检测所需心电信号更短,且在准确率上具备显著优势.
更多相关知识
- 浏览0
- 被引60
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文