• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Computational prediction and functional analysis of arsenic-binding proteins in human cells

摘要Background:Arsenic has a broad anti-cancer ability against hematologic malignancies and solid tumors.To systematically understand the biological functions of arsenic,we need to identify arsenic-binding proteins in human cells.However,due to lack of effective theoretical tools and experimental methods,only a few arsenic-binding proteins have been identified.Methods:Based on the crystal structure of ArsM,we generated a single mutation free energy profile for arsenic binding using free energy perturbation methods.Multiple validations provide an indication that our computational model has the ability to predict arsenic-binding proteins with desirable accuracy.We subsequently apply this computational model to scan the entire human genome to identify aH the potential arsenic-binding proteins.Results:The computationally predicted arsenic-binding proteins show a wide range of biological functions,especially in the signaling transduction pathways.In the signaling transduction pathways,arsenic directly binds to the key factors (e.g.,Notch receptors,Notch ligands,Wnt family proteins,TGF-beta,and their interacting proteins) and results in significant inhibitions on their enzymatic activities,further having a crucial impact on the related signaling pathways.Conclusions:Arsenic has a significant impact on signaling transduction in cells.Arsenic binding to proteins can lead to dysfunctions of the target proteins,having crucial impacts on both signaling pathway and gene transcription.We hope that the computationally predicted arsenic-binding proteins and the functional analysis can provide a novel insight into the biological functions of arsenic,revealing a mechanism for the broad anti-cancer of arsenic.

更多
广告
作者单位 Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China [1] Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University,Shanghai 200240, China [2] Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University,Shanghai 200240, China;Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [3] Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University,Shanghai 200240, China;Key Laboratory of Systems Biomedicine(Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China [4]
栏目名称 RESEARCH ARTICLES
发布时间 2019-12-30
基金项目
the National Key R&D Program of China National High-Tech R&D Program the National Natural Science Foundation of China MOE New Century Excellent Talents in University SJTU Med-Eng Joint Program (No.YG2016MS33) for financial supports
提交
  • 浏览5
  • 下载0
定量生物学(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷