• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

COVIDX:Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans

摘要Background:Coronavirus disease(COVID-19)is a contagious infection caused by severe acute respiratory syndrome coronavirus-2(SARS-COV-2)and it has infected and killed millions of people across the globe.Objective:In the absence or inadequate provision of therapeutic treatments of COVID-19 and the limited convenience of diagnostic techniques,there is a necessity for some alternate spontaneous screening systems that can easily be used by the physicians to rapidly recognize and isolate the infected patients to circumvent onward surge.A chest X-ray(CXR)image can effortlessly be used as a substitute modality to diagnose the COVID-19.Method:In this study,we present an automatic COVID-19 diagnostic and severity prediction system(COVIDX)that uses deep feature maps of CXR images along with classical machine learning algorithms to identify COVID-19 and forecast its severity.The proposed system uses a three-phase classification approach(healthy vs unhealthy,COVID-19 vs pneumonia,and COVID-19 severity)using different conventional supervised classification algorithms.Results:We evaluated COVIDX through 10-fold cross-validation,by using an external validation dataset,and also in a real setting by involving an experienced radiologist.In all the adopted evaluation settings,COVIDX showed strong generalization power and outperforms all the prevailing state-of-the-art methods designed for this purpose.Conclusions:Our proposed method(COVIDX),with vivid performance in COVID-19 diagnosis and its severity prediction,can be used as an aiding tool for clinical physicians and radiologists in the diagnosis and follow-up studies of COVID-19 infected patients.

更多
广告
作者 Wajid Arshad Abbasi [1] Syed Ali Abbas [1] Saiqa Andleeb [2] Maryum Bibi [1] Fiaz Majeed [3] Abdul Jaleel [4] Muhammad Naveed Akhtar [5] 学术成果认领
作者单位 Computational Biology and Data Analysis Lab,Department of Computer Sciences&Information Technology,King Abdullah Campus,University of Azad Jammu&Kashmir,Muzaffarabad,AJ&K 13100,Pakistan [1] Biotechnology Lab,Department of Zoology,King Abdullah Campus,University of Azad Jammu&Kashmir,Muzaffarabad,AJ&K 13100,Pakistan [2] Department of Software Engineering,University of Gujrat,Gujrat 50700,Pakistan [3] Department of Computer Science,(RCET),UET,Lahore 54000,Pakistan [4] Computational and Internet Services Division,Pakistan Institute of Engineering and Applied Sciences(PIEAS),Islamabad 44000,Pakistan [5]
栏目名称 RESEARCH ARTICLES
发布时间 2022-07-21
提交
  • 浏览9
  • 下载0
定量生物学(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷