• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于默认网络贝叶斯模型的轻微型肝性脑病的判别方法

Discrimination for minimal hepatic encephalopathy based on Bayesian modeling of default mode network

摘要为了将轻微型肝性脑病(MHE)患者从正常人中区分出来,首先使用独立分量分析(ICA)从静息态fMRI中提取默认网络(DMN),然后使用基于图像模型的多元分析方法(GAMMA),该算法为基于像素水平贝叶斯方法,用来探索默认网络中的功能整合异常现象和临床参数之间的关系.在没有先验知识的前提下,使用5种机器学习的方法(支持向量机,分类回归树,逻辑回归,贝叶斯网络及C4.5)来进行分类.研究发现DMN中功能整合出现异常,并对MHE有很高的预测能力,准确率达到98%.因此,认为基于GAMMA提取的DMN功能整合异常可作为一个简单、客观的神经影像学标志物来区分MHE,并可成为现有MHE诊断方法的有力补充.

更多
广告
提交
  • 浏览3
  • 下载2
东南大学学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷