Insight into pericytes in glioblastoma angiogenesis:In vivo tracking by two-photon microscopy and proteomic profiling
摘要Background:Glioblastoma(GBM)is a highly aggressive brain tumor characterized by aberrant angiogenesis and an immunosuppressive microenvironment.Pericytes are aberrantly recruited but their spatiotemporal roles and molecular changes remain un-clear.This study investigated platelet-derived growth factor receptor beta-positive(Pdgfrb+)pericyte dynamics and reprogramming in GBM vasculature.Methods:We generated GL261-Luc and GL261-CFP glioblastoma cells via lentivi-ral transduction and established two transgenic models.(1)For pericyte labeling,Ai14 reporter mice was crossed with PDGFRβ-P2A-CreER T2 mice for tdTomato-specific lineage tracing(PT mice).(2)For conditional ablation,we generated inducible Pdgfrb-expressing cell ablation models(PT mice was crossed with ROSA-DTA mice).An intravital imaging platform(FITC-dextran/CFP/tdTomato+two-photon microscopy)tracked pericytes,vessels,and tumor cells,while FACS-sorted Pdgfrb+cells from GBM and normal brain were analyzed by LC-MS/MS proteomics.Results:Cre-mediated ablation of Pdgfrb-expressing cells revealed stage-dependent effects on GBM growth:early ablation inhibited progression while late ablation pro-moted it.Pericytes undergo dual spatial reorganization in GBM:regional enrichment with pre-sprouting accumulation at the tumor-brain interface,and focal positioning with preferential localization at vascular branch points.Concurrently,GBM vascula-ture displayed simplified branching,dilation,and pericyte remodeling(shorter pro-cesses,higher density).Proteomics revealed 1426 altered proteins,with upregulated proliferation pathways(e.g.,matrix metallopeptidase 14[Mmp14],lysyl oxidase like 2[Loxl2])and downregulated homeostasis functions(e.g.,transforming growth factor beta 1[Tgfb1]),validated by scRNA-seq in human GBM.Conclusions:This study demonstrates that during early GBM progression,peri-cytes actively drive tumor angiogenesis through molecular reprogramming toward proliferative and pro-angiogenic phenotypes,with the integrated imaging-proteomics framework revealing potential therapeutic targets for disrupting pericyte-mediated vascular remodeling.
更多相关知识
- 浏览0
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



