医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于距匹配及判别表征学习的多模态特征融合分类模型研究:高级别胶质瘤与单发性脑转移瘤的鉴别诊断

A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis

摘要目的 探索基于距匹配及判别表征学习的多模态特征融合分类模型在鉴别高级别胶质瘤(HGG)与单发性脑转移(SBM)中的鉴别能力和应用价值.方法 收集了121例患者(61例HGG和60例SBM)的多参数磁共振成像(MRI)扫描图像,在T1W1、T2W1、T2加权液体衰减反转恢复(T2_FLAIR)和T1WI增强图像(CE_T1WI)4种常规轴位MRI图像上勾画目标感兴趣区域(ROI),并使用开源影像组学工具Pyradiomics从4个MRI序列分别提取影像组学特征.使用本研究提出的基于距匹配及判别表征学习的多模态特征融合分类模型对4个MRI序列的影像组学特征进行融合并得到分类模型.采用五折交叉验证方法和特异性(SPE)、灵敏度(SEN)、准确率(ACC)、ROC曲线下面积(AUC)评价该分类模型的鉴别性能.将本研究所提模型与其他特征融合分类模型对于HGG与SBM的鉴别能力进行定量比较,同时对本研究提出特征融合方法得到的融合特征进行样本散点可视化实验,验证本研究所提出的多模态特征融合分类模型的可行性和有效性.结果 五折交叉验证结果显示本研究所提出的基于距匹配及判别表征学习的多模态特征融合分类模型在鉴别高级别胶质瘤与单发性脑转移瘤中的SPE、SEN、ACC、AUC分别为:0.871、0.817、0.843、0.930,且特征融合方法在可视化实验中具有优秀的表现.结论 基于距匹配及判别表征学习的多模态特征融合分类模型在鉴别高级别胶质瘤与单发性脑转移瘤中的应用具有优秀的鉴别能力和较高的应用价值.同时,与其他特征融合分类模型相比,本研究提出的分类模型在HGG与SBM的鉴别分类任务中具有较大的优势.

更多
广告
作者 张振阳 [1] 谢金城 [1] 钟伟雄 [1] 梁芳蓉 [2] 杨蕊梦 [3] 甄鑫 [1] 学术成果认领
作者单位 南方医科大学生物医学工程学院,广东 广州 510515 [1] 华南理工大学医学院,广东 广州 510006 [2] 华南理工大学附属第二医院(广州市第一人民医院)放射科,广东 广州 510180;华南理工大学医学院,广东 广州 510006 [3]
栏目名称
DOI 10.12122/j.issn.1673-4254.2024.01.16
发布时间 2024-02-01(万方平台首次上网日期,不代表论文的发表时间)
  • 浏览42
  • 下载14
南方医科大学学报

南方医科大学学报

2024年44卷1期

138-145页

MEDLINEISTICPKUCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷