• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Kinematic Modeling for Biped Robot Gait Trajectory Using Machine Learning Techniques

摘要This paper presents the predictive models for biped robot trajectory generation.Predictive models are parametrizing as a continuous function of joint angle trajectories.In a previous work,the authors had collected the human locomotion dataset at RAMAN Lab,MNIT,Jaipur,India.The MNIT gait dataset consists of walking data on a plane surface of 120 human subjects from different age groups and genders.Thirty-two machine learning models(linear,support vector,k-nearest neighbor,ensemble,probabilistic,and deep learning)trained using the collected dataset.In addition,two types of mapping,(a)one-to-one and(b)many-to-one,are presented for each model.These mapping models act as a reference policy for the control of joints and prediction of state for the next time instant in advance if the onboard sensor fails.Results show that the deep learning and probabilistic learning models perform better for both types of mappings.Also,the probabilistic model outperforms the deep learning-based models in terms of maximum error,because the probabilistic model effectively deals with the prediction uncertainty.In addition,many-to-one outperforms the one-to-one mapping because it captures the correla-tion between knee,hip,and ankle trajectories.Therefore,this study suggests a many-to-one mapping using the probabilistic model for biped robot trajectory generation.

更多
广告
作者 Bharat Singh [1] Ankit Vijayvargiya [1] Rajesh Kumar [1] 学术成果认领
作者单位 Department of Electrical Engineering,Malaviya National Institute of Technology,Jaipur 302017,India [1]
栏目名称 RESEARCH ARTICLES
发布时间 2022-08-15
提交
  • 浏览14
  • 下载0
仿生工程学报(英文版)

仿生工程学报(英文版)

2022年19卷2期

355-369页

SCIMEDLINEISTICCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷