医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Identification of Pulmonary Hypertension Animal Models Using a New Evolutionary Machine Learning Framework Based on Blood Routine Indicators

摘要Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study proposes a Kernel Extreme Learning Machine(KELM)model based on an improved Whale Optimization Algorithm(WOA)for predicting PH mouse models.The experimental results showed that the selected blood indicators,including Haemoglobin(HGB),Hema-tocrit(HCT),Mean,Platelet Volume(MPV),Platelet distribution width(PDW),and Platelet-Large Cell Ratio(P-LCR),were essential for identifying PH mouse models using the feature selection method proposed in this paper.Remarkably,the method achieved 100.0%accuracy and 100.0%specificity in classification,demonstrating that our method has great potential to be used for evaluating and identifying mouse PH models.

更多
广告
作者 Jiao Hu [1] Shushu Lv [2] Tao Zhou [3] Huiling Chen [1] Lei Xiao [1] Xiaoying Huang [4] Liangxing Wang [4] Peiliang Wu [4] 学术成果认领
作者单位 Department of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou 325035,People's Republic of China [1] Department of Dermatology,Beijing Tongren Hospital,Capital Medical University,Beijing 100730,People's Republic of China [2] The First Clinical College,Wenzhou Medical University,Wenzhou 325000,People's Republic of China [3] Department of Pulmonary and Critical Care Medicine,The First Affiliated Hospital of Wenzhou Medical University,Wenzhou 325000,People's Republic of China [4]
栏目名称
发布时间 2023-04-11(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览5
  • 下载0
仿生工程学报(英文版)

仿生工程学报(英文版)

2023年20卷2期

762-781页

SCIMEDLINEISTICCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷