医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

An Optimization System for Intent Recognition Based on an Improved KNN Algorithm with Minimal Feature Set for Powered Knee Prosthesis

摘要In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputa-tions,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee.

更多
广告
作者 Yao Zhang [1] Xu Wang [1] Haohua Xiu [2] Lei Ren [3] Yang Han [4] Yongxin Ma [1] Wei Chen [1] Guowu Wei [5] Luquan Ren [1] 学术成果认领
作者单位 Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,People's Republic of China [1] Robotics Institute of NBUT,Ningbo University of Technology,Ningbo 315211,People's Republic of China [2] Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,People's Republic of China;Department of Mechanical,Aerospace and Civil Engineering,The University of Manchester,Manchester M13 9PL,UK [3] School of Mechanical Science and Aerospace Engineering,Jilin University,Changchun 130022,People's Republic of China [4] School of Science,Engineering and Environment,University of Salford,Salford M5 4WT,UK [5]
栏目名称
DOI 10.1007/s42235-023-00419-w
发布时间 2023-12-22(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
仿生工程学报(英文版)

仿生工程学报(英文版)

2023年20卷6期

2619-2632页

SCIMEDLINEISTICCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷