摘要Electrochemical actuators based on conductive polymers are emerging as a strong competitive in the field of soft actuators because of their intrinsically conformable/elastic nature,low cost,low operating voltage and air-working ability.Recent development has shown that adding electroactive materials,such as CNT and graphene,can improve their actuation perfor-mance.Despite the complex material systems used,their output strains(one of the key factors)are generally lower than 1%,which limited further applications of them in multiple scenarios.Here,we report soft electrochemical actuators based on conductive polymer ionogels by embedding polyaniline particles between the PEDOT:PSS nanosheets.Results show that such a hierarchical structure not only leads to a high conductivity(1250 S/cm)but also improved electrochemical activities.At a low operating voltage of 1 V,the maximum strain of these soft actuators reaches an exceptional value of 1.5%,with a high blocking force of 1.3 mN.Using these high-performance electrochemical actuators,we demonstrate soft grippers for manipulating object and a bionic flower stimulated by an electrical signal.This work sets an important step towards enabling the enhanced performance of electrochemical actuators based on conductive polymers with designed microstructures.
更多相关知识
- 浏览2
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文