摘要Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator is precurved and a pneumatic source is used to flatten it,requiring no energy cost to maintain the equilibrium curved shape.Pressurizing and depressurizing the actuators generate alternating stretching and bending motions of the actuators,achieving the crawling motion of the robotic crawler.Multi-modal locomotion(crawling,turning,and pipe climbing)is achieved by modular recon-figuration and gait design.An analytical kinematic model is proposed to characterize the quasi-static curvature and step size of a single-module crawler.Multiple configurations of robotic crawlers are fabricated to demonstrate the crawling ability of the proposed design.A set of systematic experiments are set up and conducted to understand how crawler responses vary as a function of FPC prestrains,input pressures,and actuation frequencies.As per the experiments,the maximum carrying load ratio(carrying load divided by robot weight)is found to be 22.32,and the highest crawling velocity is 3.02 body length(BL)per second(392 mm/s).Multi-modal capabilities are demonstrated by reconfiguring three soft crawlers,including a matrix crawler robot crawling in amphibious environments,and an inching crawler turning at an angular velocity of 2°/s,as well as earthworm-like crawling robots climbing a 20° inclination slope and pipe.
更多相关知识
- 浏览1
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文