摘要The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited number of param-eters,WOA's search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems.To address this limitation,we propose a new algorithm called Multi-trial Vector-based Whale Opti-mization Algorithm(MTV-WOA)that incorporates a Balancing Strategy-based Trial-vector Producer(BS_TVP),a Local Strategy-based Trial-vector Producer(LS_TVP),and a Global Strategy-based Trial-vector Producer(GS_TVP)to address real-world optimization problems of varied degrees of difficulty.MTV-WOA has the potential to enhance exploitation and exploration,reduce the probability of being stranded in local optima,and preserve the equilibrium between exploration and exploitation.For the purpose of evaluating the proposed algorithm's performance,it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions.Moreover,MTV-WOA is compared with well-stablished,recent,and WOA variant algorithms.The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate.Additionally,we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms.Finally,we solved five engi-neering design problems to demonstrate the practicality of MTV-WOA.The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.
更多相关知识
- 浏览1
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



