医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Multi-trial Vector-based Whale Optimization Algorithm

摘要The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited number of param-eters,WOA's search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems.To address this limitation,we propose a new algorithm called Multi-trial Vector-based Whale Opti-mization Algorithm(MTV-WOA)that incorporates a Balancing Strategy-based Trial-vector Producer(BS_TVP),a Local Strategy-based Trial-vector Producer(LS_TVP),and a Global Strategy-based Trial-vector Producer(GS_TVP)to address real-world optimization problems of varied degrees of difficulty.MTV-WOA has the potential to enhance exploitation and exploration,reduce the probability of being stranded in local optima,and preserve the equilibrium between exploration and exploitation.For the purpose of evaluating the proposed algorithm's performance,it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions.Moreover,MTV-WOA is compared with well-stablished,recent,and WOA variant algorithms.The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate.Additionally,we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms.Finally,we solved five engi-neering design problems to demonstrate the practicality of MTV-WOA.The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.

更多
广告
作者 Mohammad H.Nadimi-Shahraki [1] Hajar Farhanginasab [1] Shokooh Taghian [1] Ali Safaa Sadiq [2] Seyedali Mirjalili [3] 学术成果认领
作者单位 Faculty of Computer Engineering,Najafabad Branch,Islamic Azad University,Najafabad 8514143131,Iran;Big Data Research Center,Najafabad Branch,Islamic Azad University,Najafabad 8514143131,Iran [1] Department of Computer Science,Nottingham Trent University,Nottingham NG11 8NS,UK [2] Centre for Artificial Intelligence Research and Optimisation,Torrens University,Brisbane 4006,Australia [3]
栏目名称
DOI 10.1007/s42235-024-00493-8
发布时间 2024-07-18(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览1
  • 下载0
仿生工程学报(英文版)

仿生工程学报(英文版)

2024年21卷3期

1465-1495页

SCIMEDLINEISTICCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷