摘要In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm's movement.The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion.To enhance the robot's movement efficiency and reduce wear on the adsorption device,a gait mimicking an inchworm's movement is planned,and foot trajectory planning is performed using a quintic polynomial function.Under velocity constraints,foot trajectory optimization is achieved using an improved Particle Swarm Optimization(PSO)algorithm,determining the quintic polynomial function with the best fitness through simulation.Finally,through comparative experiments,the climbing time of the robot closely matches the simulation results,validating the trajectory planning method's accuracy.
更多相关知识
- 浏览0
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文