医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Dendritic Learning and Miss Region Detection-Based Deep Network for Multi-scale Medical Segmentation

摘要Automatic identification and segmentation of lesions in medical images has become a focus area for researchers.Segmenta-tion for medical image provides professionals with a clearer and more detailed view by accurately identifying and isolating specific tissues,organs,or lesions from complex medical images,which is crucial for early diagnosis of diseases,treatment planning,and efficacy tracking.This paper introduces a deep network based on dendritic learning and missing region detec-tion(DMNet),a new approach to medical image segmentation.DMNet combines a dendritic neuron model(DNM)with an improved SegNet framework to improve segmentation accuracy,especially in challenging tasks such as breast lesion and COVID-19 CT scan analysis.This work provides a new approach to medical image segmentation and confirms its effective-ness.Experiments have demonstrated that DMNet outperforms classic and latest methods in various performance metrics,proving its effectiveness and stability in medical image segmentation tasks.

更多
广告
作者 Lin Zhong [1] Zhipeng Liu [1] Houtian He [1] Zhenyu Lei [1] Shangce Gao [1] 学术成果认领
作者单位 Faculty of Engineering,University of Toyama,Toyama 9300887,Japan [1]
栏目名称
DOI 10.1007/s42235-024-00499-2
发布时间 2024-09-13(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
仿生工程学报(英文版)

仿生工程学报(英文版)

2024年21卷4期

2073-2085页

SCIMEDLINEISTICCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷