摘要Effectively controlling active power-assist lower-limb exoskeletons in a human-in-the-loop manner poses a substantial chal-lenge,demanding an approach that ensures wearer autonomy while seamlessly adapting to diverse wearer needs.This paper introduces a novel hierarchical control scheme comprising five integral components:intention recognition layer,dynamics feedforward layer,force distribution layer,feedback compensation layer,as well as sensors and actuators.The intention rec-ognition layer predicts the wearer's movement and enables wearer-dominant movement through integrated force and position sensors.The force distribution layer effectively resolves the statically indeterminate problem in the context of double-foot support,showcasing flexible control modes.The dynamics feedforward layer mitigates the effect of the exoskeleton itself on movement.Meanwhile,the feedback compensation layer provides reliable closed-loop control.This approach mitigates abrupt changes in joint torques during frequent transitions between swing and stance phases by decomposed dynamics.Validating this innovative hierarchical control scheme on a hydraulic exoskeleton platform through a series of experiments,the results demonstrate its capability to deliver assistance in various modes such as stepping,squatting,and jumping while adapting seamlessly to different terrains.
更多相关知识
- 浏览0
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文