• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Boosted Spider Wasp Optimizer for High-dimensional Feature Selection

摘要With the increasing dimensionality of the data,High-dimensional Feature Selection(HFS)becomes an increasingly dif-ficult task.It is not simple to find the best subset of features due to the breadth of the search space and the intricacy of the interactions between features.Many of the Feature Selection(FS)approaches now in use for these problems perform sig-nificantly less well when faced with such intricate situations involving high-dimensional search spaces.It is demonstrated that meta-heuristic algorithms can provide sub-optimal results in an acceptable amount of time.This paper presents a new binary Boosted version of the Spider Wasp Optimizer(BSWO)called Binary Boosted SWO(BBSWO),which combines a number of successful and promising strategies,in order to deal with HFS.The shortcomings of the original BSWO,including early convergence,settling into local optimums,limited exploration and exploitation,and lack of population diversity,were addressed by the proposal of this new variant of SWO.The concept of chaos optimization is introduced in BSWO,where initialization is consistently produced by utilizing the properties of sine chaos mapping.A new convergence parameter was then incorporated into BSWO to achieve a promising balance between exploration and exploitation.Multiple exploration mechanisms were then applied in conjunction with several exploitation strategies to effectively enrich the search process of BSWO within the search space.Finally,quantum-based optimization was added to enhance the diversity of the search agents in BSWO.The proposed BBSWO not only offers the most suitable subset of features located,but it also lessens the data's redundancy structure.BBSWO was evaluated using the k-Nearest Neighbor(k-NN)classifier on 23 HFS problems from the biomedical domain taken from the UCI repository.The results were compared with those of traditional BSWO and other well-known meta-heuristics-based FS.The findings indicate that,in comparison to other competing techniques,the proposed BBSWO can,on average,identify the least significant subsets of features with efficient classification accuracy of the k-NN classifier.

更多
广告
作者 Elfadil A.Mohamed [1] Malik Sh.Braik [2] Mohammed Azmi Al-Betar [3] Mohammed A.Awadallah [4] 学术成果认领
作者单位 Artificial Intelligence Research Center(AIRC),College of Engineering and Information Technology,Ajman University,346,Ajman,United Arab Emirates [1] Department of Computer Science,Al-Balqa Applied University,Al-Salt 19117,Jordan [2] Artificial Intelligence Research Center(AIRC),College of Engineering and Information Technology,Ajman University,346,Ajman,United Arab Emirates;Department of Information Technology,Al-Balqa Applied University,Irbid 21510,Jordan [3] Department of Computer Science,Al-Aqsa University,Gaza 4051,Palestine;Artificial Intelligence Research Center(AIRC),Ajman University,346,Ajman,United Arab Emirates [4]
栏目名称 BIOINSPIRED ALGORITHMS AND APPLICATIONS
DOI 10.1007/s42235-024-00558-8
发布时间 2025-01-25
提交
  • 浏览1
  • 下载0
仿生工程学报(英文版)

仿生工程学报(英文版)

2024年21卷5期

2424-2459页

SCIMEDLINEISTICCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷