医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Feature Selection Based on Improved White Shark Optimizer

摘要Feature Selection(FS)is an optimization problem that aims to downscale and improve the quality of a dataset by retaining relevant features while excluding redundant ones.It enhances the classification accuracy of a dataset and holds a crucial position in the field of data mining.Utilizing metaheuristic algorithms for selecting feature subsets contributes to optimiz-ing the FS problem.The White Shark Optimizer(WSO),as a metaheuristic algorithm,primarily simulates the behavior of great white sharks'sense of hearing and smelling during swimming and hunting.However,it fails to consider their other randomly occurring behaviors,for example,Tail Slapping and Clustered Together behaviors.The Tail Slapping behavior can increase population diversity and improve the global search performance of the algorithm.The Clustered Together behavior includes access to food and mating,which can change the direction of local search and enhance local utiliza-tion.It incorporates Tail Slapping and Clustered Together behavior into the original algorithm to propose an Improved White Shark Optimizer(IWSO).The two behaviors and the presented IWSO are tested separately using the CEC2017 benchmark functions,and the test results of IWSO are compared with other metaheuristic algorithms,which proves that IWSO combining the two behaviors has a stronger search capability.Feature selection can be mathematically described as a weighted combination of feature subset size and classification error rate as an optimization model,which is iteratively optimized using discretized IWSO which combines with K-Nearest Neighbor(KNN)on 16 benchmark datasets and the results are compared with 7 metaheuristics.Experimental results show that the IWSO is more capable in selecting feature subsets and improving classification accuracy.

更多
广告
作者 Qianqian Cui [1] Shijie Zhao [2] Miao Chen [1] Qiuli Zhao [1] 学术成果认领
作者单位 Institute of Intelligence Science and Optimization,Liaoning Technical University,Fuxin 123000,China [1] Institute of Intelligence Science and Optimization,Liaoning Technical University,Fuxin 123000,China;School of Geomatics,Liaoning Technical University,Fuxin 123000,China;Institute for Optimization and Decision Analytics,Liaoning Technical University,Fuxin 123000,China [2]
栏目名称
DOI 10.1007/s42235-024-00580-w
发布时间 2025-01-25(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览2
  • 下载0
仿生工程学报(英文版)

仿生工程学报(英文版)

2024年21卷6期

3123-3150页

SCIMEDLINEISTICCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷