• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于MRI影像组学及ATN分类系统的列线图预测轻度认知障碍进展

Value of a histogram based on MRI radiomics and ATN classification system in predicting the progression of mild cognitive impairment

摘要目的:探讨基于MRI组学特征及ATN分类的列线图对轻度认知障碍(MCI)患者认知进展的预测价值.方法:搜集阿尔茨海默病神经影像学计划(ADNI)数据库中147例认知功能正常者(CN)、197例轻度认知障碍(MCI)患者以及128例阿尔茨海默病(A D)患者的临床和影像资料.在5年随访期内,MCI患者中有100例进展为痴呆,余97例认知功能保持稳定.采用Freesurfer软件对CN人群以及MCI、AD患者的3D-T1 WI图像进行自动化后处理,提取全脑皮层和皮层下结构的影像组学特征,并筛选最佳影像组学特征构建组学模型以区分CN和AD患者.采用受试者操作特征(ROC)曲线分别评价脑脊液(CSF)Aβ42(A)和p-tau浓度(T)和组学模型(N)区分CN和AD患者的效能,分别计算阈值作为A、T、N的阳性分界值,并用于MCI人群的ATN分类.使用Cox回归分析筛选与MCI患者认知障碍进展相关的临床危险因素,并使用多因素Cox比例风险模型结合A T N分类构建联合预测模型并制作列线图.采用一致性指数(C-index)和校准曲线(Hosmer-Lemeshow检验)评估模型的预测能力和准确性,Kaplan-Meier(KM)分析用于风险分层.结果:每例患者共提取了全脑皮层及皮层下区域的1198个影像组学特征,经特征筛选,最终选取15个最佳影像组学特征用于构建诊断模型.脑脊液Aβ42、脑脊液p-tau和组学模型区分CN和AD患者的ROC曲线下面积(AUC)分别为0.813、0.822和0.998.Cox回归分析显示,载脂蛋白E(APOE)ε4等位基因(HR=2.449;95%CI=1.539~3.896)、临床活动调查问卷(FAQ)评分(HR=1.111;95%CI=1.069~1.156)和动物词汇流畅性测试(AFT)评分(HR=0.949;95%CI=0.901~0.999)是与MCI患者认知障碍进展相关的临床危险因素.联合预测模型在训练集和验证集的的C-index分别为0.927和0.906,校准曲线显示联合模型的预测结果与患者的实际进展情况之间差异无统计学意义(P=0.119、0.778),模型的拟合效果较好.K M分析结果显示,以联合模型预测概率的中位数0.02作为临界值,可以很好地将M C I患者分为低风险和高风险进展组(log-rank test,P<0.0001).结论:基于MRI影像组学及ATN分类系统的列线图模型有助于对轻度认知障碍患者的认知障碍进展的概率进行个体化预测.

更多
广告
作者 宋娆 [1] 吴小佳 [1] 李传明 [1] 刘欢 [2] 郭大静 [1] 汤琳 [1] 学术成果认领
作者单位 400010 重庆,重庆医科大学附属第二医院放射科 [1] 201203 上海,G E医疗精准医学研究院 [2]
分类号 R445.5R749.1
栏目名称 中枢神经影像学
DOI 10.13609/j.cnki.1000-0313.2021.12.005
发布时间 2022-01-04
基金项目
重庆市科卫联合医学科研重点项目 重庆市自然科学基金面上项目 重庆医科大学附属第二医院"宽仁英才"项目
  • 浏览126
  • 下载44
放射学实践

放射学实践

2021年36卷12期

1481-1487页

ISTICPKUCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷