• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement

摘要Gene regulation is central to all aspects of organism growth,and understanding it using large-scale func-tional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops.However,the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking.In this study,we constructed a wheat integrative gene regulatory network(wGRN)by combining an updated genome annotation and diverse complementary functional data-sets,including gene expression,sequence motif,transcription factor(TF)binding,chromatin accessibility,and evolutionarily conserved regulation.wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127 439 target genes,which were further verified using known regulatory relationships,condition-specific expression,gene functional information,and experiments.We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes asso-ciated with complex phenotypic traits in genome-wide association studies.In addition,wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks.We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat acces-sions.Finally,we developed an interactive webserver,wGRN(http://wheat.cau.edu.cn/wGRN),for the com-munity to explore gene regulation and discover trait-associated genes.Collectively,this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.

更多
广告
作者 Yongming Chen [1] Yiwen Guo [1] Panfeng Guan [1] Yongfa Wang [1] Xiaobo Wang [1] Zihao Wang [1] Zhen Qin [1] Shengwei Ma [2] Mingming Xin [1] Zhaorong Hu [1] Yingyin Yao [1] Zhongfu Ni [1] Qixin Sun [1] Weilong Guo [1] Huiru Peng [1] 学术成果认领
作者单位 Frontiers Science Center for Molecular Design Breeding,Key Laboratory of Crop Heterosis and Utilization,Beijing Key Laboratory of Crop Genetic Improvement,China Agricultural University,Beijing 100193,China [1] Hainan Yazhou Bay Seed Laboratory,Sanya,Hainan,China;State Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing,China [2]
DOI 10.1016/j.molp.2022.12.019
发布时间 2024-04-09
提交
  • 浏览1
  • 下载0
分子植物(英文版)

分子植物(英文版)

2023年2期

393-414页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷